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Abstract Many studies have shown that molecular
markers can improve the efficiency of the selection of
quantitative traits in plant breeding provided that large
population sizes are used. As a way to limit experi-
mental costs it appears that the use of unreplicated
trials may be more valuable than the use of replicated
plots in one trial. In this particular context of unrep-
licated large trials, spatial heterogeneity within the field
may reduce the efficiency of the selection. The problem
of controlling spatial heterogeneity was seldom con-
sidered in the case of marker-assisted selection (MAS).
Here, we propose an integrated method to predict
genetic values considering simultaneously marker in-
formation and possible spatial heterogeneity. This
method was applied to a population of 300 F

3
lines of

maize evaluated in 11 unreplicated trials for grain yield.
We show that when spatial field heterogeneity is con-
sidered through appropriate statistical models the ac-
curacy of genetic value predictions is improved and the
same genetic gain can be achieved with a reduced
number of trials.
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Introduction

The use of markers to improve the prediction of genetic
values for quantitative traits has received extensive

interest in the recent past. Lande and Thompson (1990)
proposed to select individuals on an index that in-
cluded both phenotype and ‘molecular score’ (obtained
by the multiple regression of phenotype on marker
type). Since 1990, the efficiency of this marker-assisted
selection (MAS) relative to purely phenotypic selection
has been widely studied, in the case of populations
derived from the cross of two inbred lines, through
analytical approaches (Lande and Thompson 1990,
Luo et al. 1997; Moreau et al. 1998) and simulations
(Zhang and Smith 1992, 1993; Gimelfarb and Lande
1994, 1995; Whittaker et al. 1995; Hospital et al. 1997).
One of the main results of these studies is that MAS has
been determined to be efficient only for large popula-
tion sizes (the population size required depends on the
heritability of the trait, but is generally above 200). For
small population sizes, the power of detection of the
associations between markers and QTLs (quantitative
trait loci) is small, and QTL effects associated with the
markers are poorly estimated. This result implies that
both phenotypes and genotypes at marker loci must be
evaluated for numerous lines (individuals or progenies).
Knapp and Bridges (1990) showed that for any given
experimental means, the resolution of QTL mapping
experiments is improved by increasing the number of
lines and evaluating them only once, rather than using
a smaller population size and replicated evaluations.
Moreover, because of possible genotype]environment
interactions, phenotypes must be evaluated at different
locations. In this case, for a given number of plots, the
optimum is one replication per location (Weber 1980).
All these elements suggest that it may be more valuable
to evaluate the lines in several unreplicated field trials
than to replicate them in a smaller number of locations.

When a large number of entries is tested in a field
trial, growing conditions may vary throughout the trial
area, leading to a decreasing accuracy of the perfor-
mance estimation and therefore to a reduced genetic
gain. It is therefore important to control spatial hetero-
geneity. Methods adapted to unreplicated trials have



Table 1 Locations of the 14 trials
sown in 1995 Number of Location (department) Specific conditions Discarded

trial trials

1 Betton (35) Standard conditions
2 St Martin de la place (49) Standard conditions Discarded
3 Lusignan (86) No irrigation Discarded
4 Lusignan (86) Standard conditions
5 Blois (41) Standard conditions
6 Chataudun (28) Standard conditions
7 Senneville (28) Standard conditions
8 Fresnay-le-gilmet (28) Standard conditions
9 Gif-sur-Yvette (91) Standard conditions

10 Gif-sur-Yvette (91) Low nitrate input
11 Mons-en-Chaussée (80) Early sowing
12 Mons-en-Chaussée (80) Standard conditions
13 Provins (77) Standard conditions Discarded
14 Geudertheim (68) Standard conditions

been developed [see Kempton (1984) for a review]. In
these models, genotypes can be compared with local
checks or with neighbouring genotypes. More recently,
methods derived from time-series analyses have been
developed and can combine these two types of ap-
proaches (Cullis et al. 1989, Kempton and Gleeson
1997).

While a definite interest in controlling spatial hetero-
geneity to increase genetic gains has been fully demon-
strated (see Cullis et al. 1992) such heterogeneity is very
often neglected in QTL detection experiments. For
instance, computer programmes for QTL detection
based on ‘interval mapping’ do not take into account
local field variability. In the case of spatial heterogen-
eity, using these programs after adjusting means by
a spatial analysis can bring a significant improvement.
However, this may not be optimal since the informa-
tion coming from the field trial is not fully used when
estimating effects associated with markers. An integ-
rated one-step approach seems better than proceeding
in two steps.

In this paper, we present such an integrated ap-
proach to predict the genetic values of genotypes de-
rived from a cross between two homozygous lines. The
method is based on a mixed model incorporating local
field variations and information on markers. It has
been applied to 11 unreplicated trials sown in several
locations.

Materials and methods

Plant material and evaluation of grain yield

The plant material has been derived from a cross between two
homozygous maize lines: F2, an early European flint line, and F252,
an early dent line of USA origin. From the hybrid, 300 F

3
plants

were obtained by single seed descent (SSD). Each F
3

was self-fer-
tilized to obtain an F

4
family.

The F
4

families were evaluated with a progeny test. Each family
was crossed with a third homozygous line, MBS847, a dent line of

USA origin but unrelated to F252, used as a tester. In 1995, the
progenies were sown in 14 trials in 11 different locations in the north
of France as indicated in Table 1. This experimental network was
adapted to the earliness of the population. Among the 14 trials,
arbitrarily denoted 1 to 14 from West to East, 3 were conducted
under stressed conditions: low nitrate input (trial 10), early sowing to
induce low temperature stress during germination (trial 11) and
drought stress (trial 3). In each location where a stress was applied,
another trial was conducted under standard conditions. The other
trials were conducted following standard agricultural practices
adapted to the location (with irrigation for trials 2, 4, 5, 6, 7, 8 and
without for the other trials). As seed stocks were not sufficient to test
all the families in all the trials, only a subset of 280 was evaluated in
a given trial. In the whole experimental design, each of the 300
genotypes was evaluated in at least 3 trials, and 243 genotypes were
grown in all the trials.

Elementary plots consisted of 2 seeded rows, spaced 0.8 m apart
and, depending on the location, 5—6 m long. Each trial was divided
into 17 blocks of 20 plots (19 blocks of 18 plots in trial 5). Each block
consisted of two rows of 10 plots (2 rows of 9 plots in trial 5). Among
the 20 (18) plots within each block, 2 were sown with the single-cross
hybrids F2]MBS847 and F252]MBS847 (parental lines evaluated
in test) used as checks. Thus, each check was replicated 17 (or 19)
times per trial, and the replications were evenly spread throughout
the field. Among the 280 families evaluated in a given trial, a random
sample of 26 (24 in trial 5) was replicated twice. These replicated
genotypes were allocated to the blocks to form an efficient incom-
plete block design. The other 254 (256 in trial 5) genotypes were not
replicated and were allocated at random throughout the trial. Thus,
a total of 340 (or 342 in trial 5) plots was sown in each trial. As far as
possible, the field design was composed of 10 rows of 30 plots and
2 rows of 20 plots. However, the shape of the trials was different in
several trials. This was due to specific constraints such as the system
of irrigation which limited the maximum number of plots in each
row.

Each plot was harvested in bulk to evaluate the grain yield.
Among the 14 trials, trial 3, submitted to drought conditions, was so
severely stressed that only a few plants yielded grain. Because of
numerous problems during germination or early growth, two ‘un-
stressed’ trials (trials 2 and 13) were discarded. Consequently, our
study was then limited to only 11 trials.

Restriction fragment length polymorphic (RFLP) markers

Based on a map previously developed by Causse et al. (1996) from
four maize populations, including a population obtained from the
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hybridization of F2 and F252, RFLP probes were chosen to give
polymorphic molecular markers evenly spread on the chromosomes.
In 1995, the RFLP analyses were conducted by Linkage Genetics
Inc. F

4
families were sown, and genomic DNA was extracted from

the leaves of approximately 20 plants per family. The selected probes
were used to detect polymorphism following classical procedures
[see Causse et al. (1996) for more details] and generated 84 markers.
At each codominant marker, genotypes were scored #1 for lines
that were homozygous F2; !1 for lines that were homozygous
F252; and 0, for heterozygous lines. At dominant markers, if the
band was carried by F252, genotypes were scored #1 when the
band was absent and !2/3 when present. When the band was
carried by F2, genotypes were scored !1 when the band was absent
and #2/3 when present. These scores correspond to the expected
number of F2 alleles, given the genotype at the marker, minus 1 (the
expected number of F2 alleles in the whole population).

A genetic map was constructed from the marker data set but will
not be presented. Map distances were only used to replace the
occasional missing marker types (about 2% of the data) by their
expectation, conditional to marker types at flanking markers (as is
advocated by Martinez and Curnow 1994). When predicting the
genetic values, we considered all markers to be potential covariates
without taking into account that markers located on the same
chromosome were not independent.

Model for genetic value prediction

The usual model used for predicting the genetic values of the geno-
types of a population is:

y
i
"k#g

j
#e

i
(1)

where y
j
is the yield performance in the plot i, k is the average yield

over the trial, g
j
is the random genetic effect of genotype j and e

i
is

the effect of plot i assumed to be a random error term. The effect
g
j
and e

i
are all assumed to be independent.

The proposed model follows the same structure as model 1, but
with a more refined modelling of the genetic and plot effects.
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if j is a genotype of the population

(2)

For the checks, the genetic effect q
j

is considered as fixed (see
Cullis et al. 1989). For the genotypes of the population, the genetic
effect is subdivided into: the fixed effect M

j
"+

m
a
m
h
mj

, called the
‘molecular score’, plus g*

j
which is a random genetic effect not taken

into account by the markers. In the molecular score, h
mj

is the score
of the genotype j at marker locus m, and a

m
is the additive effect of

the F2 allele associated with the marker m. Ideally, only those
markers linked to a QTL should be included in M

j
. The term m

i
is

the effect of the plot i. It includes experimental error and local trend
in the case of spatial field heterogeneity.

The choice of markers and of trend model is discussed below.
Once it is made, the full model 2 is a mixed model and can be
analysed by the restricted maximum likelihood (REML) method
(Cullis et al. 1989; Stroup and Mulitze 1991). The programme
TWOD (Gilmour 1992) was used through the TwoD procedure of
the GENSTAT software package (Gilmour et al. 1995).

This general framework allows three different genetic values to be
estimated for each genotype in each trial:
1) Phenotypic (P) method: if no marker is included in model
2 (m"0), the genetic value is predicted by the best linear unbiased pre-
dictor (BLUP) of g*

j
, which corresponds to g

j
in this case.

2) Markers-only (M) method: molecular score MK
j
is used as a pre-

dictor of the genetic value.

3) Combined (C) method: including markers in model 2, the genetic
value is predicted with the sum of the estimated molecular score
MK

j
and the BLUP of g*

j
. This corresponds to MAS as defined by

Lande and Thompson (1990).

The aim of this paper is to evaluate whether the combined method
(C) can be improved by taking into account the spatial trend hetero-
geneity. The P and M methods are considered as references.

Choice of markers and of the model for plot effects

The main problem of the proposed approach is how to select the
trend model and the markers for each trial. For the sake of simplicity
and because there was no statistical programme adapted to our case,
the choice of the model was made in two steps. First, we chose the
model for plot effects m

i
using model 2 with no marker covariate

(m"0). Then, we kept this trend model and selected the markers to
be included in the full model. Even if not optimal this procedure is
valid since genotypes were randomly located in the field without
taking into account their genotypes at marker loci.

Spatial method for modelling plot effects

The spatial method denotes here a procedure whereby the model for
plot effects is selected from a set of candidate models. We restricted
ourselves to seven models:

— In the null model, m
i
is an error term assumed to be independent

and normally distributed with zero mean and variance p2m .
— In the random block model, m

i
is equal to b

b
(i)#e

i
, where b

b
(i) is

the random effect of the block b with zero mean and variance
p2b and e

i
is a random error term, assumed to be independent,

normally distributed with zero mean and variance p2
e
.

— in the random column model, m
i
is equal to c

x(i)
#e@

i
where c

x(i)
is

the random effect of the column x with zero mean and variance
p2
c
. This effect corresponds to the longest direction of plots and

can be relevant because it is also the direction of sowing.
— The fourth model is the row and column random model with

m
i
equal to c

x(i)
#r

y(i)
#e@@

i
where r

y(i)
is the random effect of the

row y with zero mean and variance p2
r
.

— The last three models are neighbour models as described by
Gleeson and Cullis (1987). Plot effects are assumed to be a realiz-
ation of a random autoregressive integrated moving average
(ARIMA) process. Following Cullis and Gleeson (1991) we ap-
plied these models in two directions assuming separability of the
random process in the row and column directions. Three models
were considered: AR1]AR1 (first-order autoregressive), AR2]
AR2 (second-order autoregressive) and ARMA]ARMA (first-
order autoregressive moving average) models.

For choosing the best model among the seven possible ones for
a given trial, we used the Akaike’s Information Criterion, AIC
(Akaike 1973):

!2 lod#2p,

where lod is the loglikelihood, and p is the number of variance
parameters in the model. Thus, the spatial method consists of choos-
ing the model with the smallest AIC. It must be noted that with the
REML estimation method, the maximization is made on the ran-
dom terms, and comparisons of AICs are only possible for models
which have the same fixed effects. Thus, this criterion can be used
neither to select simultaneously the best trend model and the
markers to be included in the genetic model nor to select markers
once the trend model is chosen.

With no marker in the model, the difference between the loglikeli-
hoods of two nested models follows a s2 with q degrees of freedom,
where q is the difference between the number of parameters
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Table 2 ‘‘Spatial’’ model chosen for each trial and comparison of the
AIC of models ‘‘block’’ or ‘‘spatial’’ with ‘‘no trend’’

Trials ‘‘Spatial’’ model AIC of a given model minus
AIC of the ‘‘no trend’’ model!

‘‘Block’’ ‘‘Spatial’’

1 AR2]AR2 !85*** !98***
4 Row]column !84*** !118***
5 Column #2 !34***
6 AR2]AR2 !104*** !106***
7 AR1]AR1 #2 !8**
8 Row]column #2 !8**
9 Row]column !9*** !17***

10 AR2]AR2 !27*** !206***
11 AR2]AR2 !4* !4*
12 AR2]AR2 !64*** !94***
14 ARMA]ARMA !8** !118***

!The level of significance of the loglikelihood ratio test of compari-
son between the ‘‘block’’ or ‘‘spatial’’ and ‘‘no trend’’ model is
indicated: *"5%, **"1%; ***"0.1%

estimated in each model. We used this test (further noted LR test)
to compare the significance of a given trend model relative to the
‘no trend’ one.

Selection of markers

Once the trend model was chosen, we used it during the marker
selection process. Since the programme we used (1) did not allow an
automatic stepwise approach and (2) could not take into account all
the covariates simultaneously, we used the following backward
procedure. For each trial, classical stepwise regressions on marker
scores were first performed on the phenotype means and on the
BLUPs of the genetic values obtained with each of the seven trend
models. A subset of preselected markers was made of all markers
which were retained at the 5% significant level by at least one of the
eight stepwise regressions. This subset was then introduced in the
complete model (2). The marker effects were tested with a Wald test
and, step by step, the less significant marker was removed from the
model until all the remaining markers were significant at the 5%
level. This significance level of 5% was chosen according to con-
clusions of Moreau et al. (1998).

Comparison of the efficiencies of the methods
for modelling plot effects

The spatial method was compared with two simpler methods of
modelling local trend to predict P, M and C genetic values. These
two methods assumed the same model on plot effects for all the
trials, respectively: (1) the null model, and (2) the random block effect
model. Thus, for P, M and C, three methods of modelling plot effects
will be compared in the results: ‘no trend’, ‘block’ and ‘spatial’.

It is well-known that model selection can lead to biased estima-
tion of the precision of a given model if the same data are used in the
estimation and validation steps (see, for example, Hjorth 1994). To
avoid this bias, Hill and Rosenberger (1985) did a cross-validation
based on the error of prediction of observed values in one trial when
the other trials were used for the prediction. We also did such
a cross-validation (results not shown in this paper), but we prefer to
present another approach based on correlation between trials, as
proposed by Clarke et al. (1994). These authors have shown that the
expected correlation between performances (adjusted or not by
a trend model) of two trials t and t@ is, assuming the same error
variance in both trials,

o (t, t@ )"
p2
g

p2
g
#p2

gl
#p2

e

where p2
g

is the genetic variance common to the trials, p2
gl

is
the genotype]environment interaction variance and p2

e
the error

variance.
This criterion provides an estimation of the efficiency of the model

since, if this model is well-adapted to a given trial, it must reduce the
error variance for this trial and then increase correlation with other
trials. It can also be noted that the square root of o (t, t@) is propor-
tional to the genetic gain that can be expected in one site when
genotypes are selected from the performances in another site. In fact,
o (t, t@) is the associated heritability for such a selection. This criterion
of validation is based on predicted values obtained independently in
two different trials. As genotypes were randomized among the plots
independently in each trial, errors and spatial heterogeneities are
independent in each trial. Thus, correlations between trials are not
biased by model selection.

To compare the three methods of modelling local trend, we used
one global criterion based on such correlations: the empirical aver-
age correlation between estimated genetic values over all the differ-
ent pairs of trials (i.e. oN (t, t@)"1/55 +11

t/1
+ 11

t;t{
oL (t, t@)). Nevertheless,

the interest in modelling local trend depends on the existence of

a spatial heterogeneity in the trial. Therefore, we also calculated the
average correlation between each given trial, analysed using the ‘no
trend’, ‘block’ or ‘spatial’ methods, and the other trials, analysed
with the ‘spatial’ method. In this way, differences in average correla-
tion are only due to the change in method of modelling plot effects
for this trial; the other trials always being analysed with the ‘spatial’
method. This provides a second criterion by which to compare the
methods.

Selection of the best genotypes can be based on the average of the
predicted genetic values over all the trials. In this context, the best
method of modelling plot effects should provide a given accuracy
with fewer trials. To evaluate this, it is necessary to compare the
average predicted values over a given number of trials with an
appropriate reference. The average yield performance of genotype
over all the trials is a simple reference which does not spuriously
favour the proposed method of modelling plot or genetic effects.
Consequently, we calculated the correlations between this reference
and the average predicted values obtained with the C method on
subsets of l trials analysed with the ‘no trend’, ‘block’ or ‘spatial’
method.

We limited all these analyses of correlations to the set of 243
genotypes that were common to the 11 trials.

Results

Identification of the ‘best’ trend model for each trial

For each trial, the model identified by the ‘spatial’
method is indicated in Table 2. The ‘block’ model was
never found to be the best. The ‘row]column’ or
‘AR2]AR2’ models were chosen in all but 3 trials.
Table 2 also indicates the AIC differences between
‘block’ and ‘no trend’ and between ‘spatial’ and ‘no
trend’. For trials 7, 8 and 11, all the AIC differences are
low; LR tests show that ‘block’ and ‘spatial’ are not
significantly better than the ‘no trend’ method at the
0.1% level. In these cases, one cannot expect that
taking account of spatial heterogeneity will greatly
change the predicted genetic values. In trials 5 and 9 the
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Table 3 Correlations between genetic values predicted with the ‘‘no trend’’, ‘‘block’’ and ‘‘spatial’’ methods of modelling plot effects

Trial P M C

‘‘No trend’- ‘‘No trend’’- ‘‘Block’’- ‘‘No trend’’- ‘‘No trend’’- ‘‘Block’’- ‘‘No trend’’- ‘‘No trend’’- ‘‘Block’’-
‘‘block’’ ‘‘spatial’’ ‘‘spatial’’ ‘‘block’’ ‘‘spatial’’ ‘‘spatial’’ ‘‘block’’ ‘‘spatial’’ ‘‘spatial’’

1 0.87 0.80 0.89 0.79 0.68 0.85 0.79 0.73 0.82
4 0.87 0.80 0.92 0.76 0.62 0.69 0.76 0.62 0.69
5 1 0.94 0.94 0.99 0.85 0.87 0.99 0.85 0.87
6 0.85 0.76 0.91 0.92 0.93 0.94 0.90 0.83 0.92
7 1 0.97 0.96 1 0.98 0.98 1 0.98 0.98
8 1 0.98 0.98 0.98 0.99 0.97 0.99 0.99 0.98
9 0.98 0.96 0.98 0.95 0.88 0.91 0.96 0.92 0.96

10 0.95 0.71 0.76 0.66 0.66 0.82 0.77 0.72 0.80
11 0.98 0.97 0.98 0.97 0.97 1 0.98 0.97 0.98
12 0.89 0.79 0.89 0.88 0.89 0.96 0.90 0.77 0.84
14 0.98 0.80 0.81 0.94 0.68 0.71 0.96 0.75 0.76

Table 4 Average correlation between predicted genetic values
(P, M or C) of all pairs of trials for the three methods of modelling
plot effect

Genetic value ‘‘No trend’’ ‘‘Block’’ ‘‘Spatial’’

P 0.240 0.286 0.319
M 0.400 0.428 0.464
C 0.391 0.411 0.428

differences are significant but not very great. In the
other trials (1, 4, 6, 10, 12 and 14), the differences are
much greater, so including a spatial effect in the model
should modify the predicted values. Note that in most
cases when the differences in AIC values are important,
a spatial heterogeneity was clearly observed within the
field trial during field visits. The differences between
‘block’ and ‘spatial’ AICs also vary between trials. For
trials 6 and 9, ‘block’ and ‘spatial’ AICs are close and
both are significantly better than the ‘no trend’ model.
On the other hand, for trials 5 and 14, ‘block’ and ‘no
trend’ AICs are close and ‘spatial’ appears to be much
better than the others. For trial 10, even if ‘block’ is
already significantly better than ‘no trend’, the AIC of
‘spatial’ indicates that this model is much better.

Influence of the trend model on the prediction
of the genetic values

The correlations between the genetic values predicted
with the three methods for modelling plot effects are
presented in Table 3 for the P, M and C predicted
values. The correlations are consistent with the AIC
differences: models with AIC values close to each other
yield highly correlated genetic values (trials, 7, 8 and
11). When AIC values differ, the correlations are often
smaller for the markers only (M) prediction method
than for the phenotypic (P) method (trials 1, 4, 10 or
14). Therefore, markers seem to accentuate the differ-
ences between methods for modelling plot effects. How-
ever, in trial 6 (and trial 12 to a lesser extent), the
correlation between methods is increased.

The number of markers selected in the genetic model
is similar from one method to the other, even if slightly
more markers are selected with the ‘spatial’ method
(10.5 on average) than with the ‘no trend’ (9.8) or ‘block’
(9.5) methods. The different methods do not select the
same subset of markers, but differences are often slight
and selected markers are generally located in the same

chromosomal areas. The percentage of phenotypic
variance associated with markers can be expressed by
the ratio of the variance of the observed MK

j
on the

phenotypic variance (without any adjustment by plot
effects). One can expect that this percentage increases
when the model controls the trend variability better. In
fact, this was not observed on average of the 11 trials (it
varied from 0.26 for ‘no trend’ and ‘block’ to 0.24 for
‘spatial’). Differences in percentage of phenotypic vari-
ance explained by the markers, estimated using this
approach, may not be a good criterion to compare the
methods. It is known that the effects associated with
markers are generally overestimated (as mentioned by
Lande and Thompson 1990). As these effects are ex-
pected to be better estimated using the ‘spatial’ method,
they may be overestimated to a lesser extent. This may
explain why the percentage of phenotypic variance
does not increase when the ‘spatial’ method is used.

Comparison of the efficiency of the three
methods for modelling plot effects

The average correlation between all the trials for the
different methods is given in Table 4. Generally speak-
ing, the correlations between trials are low, especially
for P genetic values. It should be noted first, that we
considered unreplicated trials, the accuracy of which is
low, and second, that the 11 trials were grown in quite
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Table 5 Average correlation between predicted genetic values of a given trial analysed with the ‘‘no trend’’ or ‘‘block’’ or ‘‘spatial’’ method
and the other trials analysed with the ‘‘spatial’’ method

Trials P M C

‘‘No trend’ ‘‘Block’’ ‘‘Spatial’’ ‘‘No trend’’ ‘‘Block’’ ‘‘Spatial’’ ‘‘No trend’’ ‘‘Block’’ ‘‘Spatial’’

1 0.209 0.251 0.271 0.357 0.388 0.411 0.322 0.351 0.388
4 0.241 0.301 0.324 0.400 0.396 0.506 0.378 0.381 0.468
5 0.384 0.384 0.370 0.517 0.521 0.499 0.484 0.491 0.494
6 0.222 0.293 0.320 0.541 0.554 0.573 0.496 0.498 0.478
7 0.344 0.344 0.322 0.447 0.447 0.444 0.409 0.411 0.409
8 0.349 0.350 0.353 0.492 0.493 0.499 0.471 0.469 0.471
9 0.345 0.362 0.368 0.515 0.521 0.518 0.487 0.488 0.479

10 0.163 0.185 0.255 0.294 0.289 0.379 0.269 0.280 0.345
11 0.336 0.344 0.343 0.426 0.435 0.435 0.415 0.422 0.422
12 0.229 0.260 0.279 0.390 0.433 0.436 0.369 0.409 0.353
14 0.249 0.264 0.306 0.380 0.428 0.402 0.373 0.408 0.403

Average 0.279 0.303 0.319 0.433 0.446 0.464 0.407 0.419 0.428

different conditions, some of them being irrigated and
others not, which generated strong genotype]environ-
ment interactions. Limiting the study to more homo-
geneous groups of trials (irrigated or not) increases
the correlations between pairs of trials (result not
presented).

For P, M and C, the average correlation between
two trials increases when a trend effect is added to the
model. ‘Spatial’ gives the best average correlations and
thus appears to be more efficient than the other two
methods. The differences between the ‘no trend’ and
‘spatial’ methods are #0.079 for P, #0.064 for M and
#0.037 for C, which give, respectively, an average
relative increase of the correlations of about 33%, 16%
and 9.5%. Modelling field trial heterogeneity seems to
be more efficient to increase the correlations when there
is no marker in the full model. This result is not surpris-
ing because markers increase the accuracy of predicted
breeding values (that is the reason why MAS is more
efficient than phenotypic selection). With markers, the
correlations are already high with the ‘no trend’
method (the average correlation is 0.391 for C but only
0.24 for P), and so they are less easily improved. The
gain due to the ‘spatial’ method for the C method is
then not negligible.

As the ‘spatial’ method appears to be the best, we
compared the average correlation between a given trial
analysed with ‘no trend’, ‘block’ or ‘spatial’ and each of
the other trials analysed with the ‘spatial’ method, the
latter considered as a reference. Important discrepan-
cies appear between trials (cf. Table 5 and Fig. 1 which
is the graphical representation of Table 5). As expected
from the AIC values, only slight differences were ob-
served between the correlations of the different
methods for trials 7, 8 and 11. The largest differences
are for trials 1, 4 and 10, for which the model chosen
with the ‘spatial’ method has an AIC much lower than
the others. The increase in correlation between ‘spatial’

and ‘no trend’ is equal to #0.092, #0.085, #0.076 for
P, M and C in trial 10, which corresponds to relative
increases of 56%, 29% and 28%, respectively. For trial
4, the increases are #0.083, #0.106 and #0.09 for P,
M and C, which correspond to relative increases of
#34%, #27% and #24%. For trial 1, the increases
are slightly lower, respectively #0.062, #0.054 and
#0.066, which give relative increases of 30%, 15% and
21%. One can observe that for trials 4 and 10, the
‘block’ method does not give such increases. For trials
6, 9, 12 and 14, modelling spatial heterogeneity (‘block’
or ‘spatial’ methods) improves the correlations. Never-
theless, for those trials, it should be noted that the
‘spatial’ method does not seem to be better than ‘block’
for the C value. For trials 6 and 9 the AICs of ‘block’
and ‘spatial’ were not really different, which could ex-
plain this result. For trials 12 and 14, this result is more
surprising, since the AIC of ‘spatial’ was much lower
than the AIC of ‘block’. For trial 5 the model chosen
with the ‘spatial’ method is much better with respect to
the AIC criterion, but in fact it does not give better
correlations than ‘block’ or ‘no trend’. Generally speak-
ing, the increase in correlation obtained by using the
‘spatial’ method is all the greater as the trial was less
accurate (less correlated with the others when the ‘no
trend’ method is used): the difference between the cor-
relations obtained by the ‘spatial’ and the ‘no trend’
methods is significantly and negatively correlated with
the correlations obtained by the ‘no trend’ method
(!0.91 for P, !0.67 for M and !0.72 for C). This is
also illustrated by Fig. 1.

As previously mentioned, the efficiency of a model
for MAS can also be evaluated through the correlation
between the average of the values estimated by the
C method on a subset of l trials and the average yield
performance on all the trials, the latter taken as refer-
ence. This reference provides a rather accurate pre-
dicted genetic value since the estimated heritability of
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Fig. 1 Average correlations between one trial analysed with ‘no
trend’, ‘block’ or ‘spatial’ method and the others analysed with
‘spatial’ method for the three methods of selection considered:
P Phenotype; M Markers; C Combined, phenotype#markers. The
solid symbols correspond to the trials (5, 7, 8, 9, 11) that have the
highest average correlations when no spatial model is assumed (‘no
trend’) and no marker included in the model (P method). The other
trials are represented with open symbols

Fig. 2 Effect of the number of trials on the accuracy of the average
genetic values predicted with the combined method according to the
spatial method considered. Each point of this graph represents
the average correlation over all the subsets of a given size between
the mean rough performances over the 11 trials, taken as a reference,
and the average predicted genetic values in the subset using the
combined method

the average yield performance is 0.7. The change in the
correlation with this reference when the size of the
subset varies from 1 to 11 is represented in Fig. 2. Each
point corresponds to the average of the correlations
obtained from all the different subsets of l trials that can
be drawn from the 11 trials. According to Fig. 2, one
can observe that, whatever the number of trials con-
sidered, the ‘spatial’ method always yields the highest
correlation and the ‘no trend’ method the worst. This is
an additional argument in favour of the ‘spatial’
method. One can also observe that the correlation of
0.8 which is achieved with 5 trials for the ‘spatial’
method is only achieved with 7 trials for the ‘block’
method and 8 trials for the ‘no trend’ method. From an
economic point of view this provides a strong argument
in favour of the ‘spatial’ method.

Discussion

In the method proposed the genetic values are divided
into two parts: one which can be explained through
marker effects and the other unexplained by markers.
Lande and Thompson (1990) proposed to select the
markers and estimate the molecular score in a first step
and then to combine the estimated molecular score and
the performance in a linear index. Weights given to

each term take into account the heritability and the
percentage of variance explained by markers. In our
approach, both parts (explained and unexplained by
markers) are estimated in the same step. When spatial
heterogeneity is not taken into account, the two ap-
proaches are asymptotically equivalent. However our
method allows one to consider spatial heterogeneity
and is more adapted to unreplicated trials, since in this
case, it is difficult to estimate the heritability and then
to determine the weights that should be given to the
molecular score and to the phenotypic performances.
This is of particular interest if the aim is to predict the
genetic value of individuals in each trial. If the main
interest is to select for general adaptation, then trials
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can be seen as replications, and Lande and Thompson’s
approach can be applied on the average performances.
The relative efficiency of our method compared to this
one should be all the higher as the number of trials is
low and the importance of spatial heterogeneity is high.

Concerning the choice of the markers to be included
in the model, several methods have been investigated in
the literature. Zhang and Smith (1992, 1993) and
Gimelfarb and Lande (1994, 1995) included in their
simulations a fixed number of markers selected in one
or two stages (first on each chromosome and then
among the pre-selected markers). Recently, Whittaker
et al. (1995), Moreau et al. (1998) and Hospital et al.
(1997) showed that it is more efficient to adapt the
number of markers to the experimental power of detec-
tion. Whittaker et al. (1995) advised using the adjusted
Mallow’s Cp and performing a two-stage regression.
Hospital et al. (1997) showed that a stepwise regression
based on type-I error risk also gives good results
that are not much different from those obtained with
Mallow’s Cp (F. Hospital, personal communication).
Moreover, Mallow’s Cp can only be carried out in
a fixed model context. As there is no satisfying statist-
ical tool for mixed models, we based our marker selec-
tion on the type-I error risk, testing marker effects with
a Wald test.

Concerning the choice of the trend model, the AIC
criterion may not be the best-adapted one, but we used
it partly for the sake of simplicity. Our results suggest
that in most cases the plot effect model identified as the
best provides more accurate genetic values. Another
criterion using the replicated genotypes to control
whether the trend model correctly adjusts the spatial
heterogeneity is under study. One tool advocated by
Cullis and Gleeson (1991) is based on the observation
of the spatial correlations matrix of the whitened resid-
uals. Cullis et al. (1998) and Gilmour and Cullis (1997)
gave additional advice, including visual inspection of
two-dimensional variograms.

A further improvement of the genetic value predic-
tion process would be to analyse simultaneously all the
trials, as proposed by Cullis et al. (1998), and to adapt
this method to the specific case of MAS. The informa-
tion from the different trials could improve the choice
of the trend model for each trial and also the power of
QTL detection and then the choice of the markers to be
included in the model. This deserves further investiga-
tion.

In spite of the empirical way in which models were
chosen, the results are encouraging since the use of the
‘spatial’ method increases the correlations between
trials. Using the ‘spatial’ method instead of the ‘no
trend’ one increases the mean correlation between pairs
of trials from 0.24 to 0.319. Including markers when
using the ‘spatial’ method further increases the correla-
tion to 0.428. In terms of selection, on the average
of 11 trials, the relative efficiency of the C ‘spatial’
method compared to the P ‘no trend’ method can

be defined as: (JoN C ‘spatial ’!JoN P ‘no trend ’ )/JoN P ‘no trend ’ ,
where oN C ‘spatial ’ and oN P ‘no trend ’ are the average correla-
tions between trials obtained with the C ‘spatial’
method and the P ‘no trend’ method, respectively. This
relative efficiency is close to 34%. If the ‘spatial’ model
is not used, the inclusion of markers leads to a relative
efficiency of 28%.

When several trials are considered, the interest of
using the ‘spatial’ method decreases as the number of
trials increases, as shown by the correlation of 0.97
between the average genetic values on 11 trials esti-
mated with the ‘no trend’ C and the ‘spatial’ C methods.
However, the main advantage of using the ‘spatial’
model in MAS is that increasing the accuracy of breed-
ing values allows one to use fewer trials to reach
the same genetic gain. Five trials using the ‘spatial’
C method appear to be as efficient as 8 trials using the
‘no trend’ C method. Moreover, it provides a more
accurate genetic prediction in each trial, allowing one
to select genotypes for their adaptation to specific con-
ditions.

It should be noted that the M method leads to higher
correlations between trials than C. However, the cor-
relations between the average genetic values estimated
with M and P methods are only about 0.7, whereas the
correlations between P and C vary between 0.82 and
0.9 depending on the trend method considered. Thus,
even if the genetic values estimated from markers are
highly consistent from one trial to another, it seems
that markers do not explain all the genetic variability.
This can be related to other experimental results
(Stuber et al. 1992, Koester et al. 1993) which suggest
that the QTLs detected are those whose effect is high
and less sensitive to environmental conditions than the
others.

As previously announced in the Introduction, we
do not provide a theoretical demonstration of the effici-
ency of this approach. Nevertheless, our results show
that it can be efficient to take into account the field trial
heterogeneity, even in the context of MAS, where the
accuracy is already improved by the use of markers.
This seems to be especially interesting when genotypes
are grown under stressed conditions. When genotypes
are grown in only a few trials, using a ‘spatial’ method
reduces the risk of achieving poor genetic gain if a spa-
tial heterogeneity occurs within the trials. Even if it was
not formally investigated here, taking into account
spatial heterogeneity should also be important in QTL
detection experiments since it improves the heritability
of the trait.
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